As the Greek empire began to spread its sphere of influence into Asia Minor, Mesopotamia
and beyond, the Greeks were smart enough to adopt and adapt useful
elements from the societies they conquered. This was as true of their
mathematics as anything else, and they adopted elements of mathematics
from both the Babylonians and the Egyptians.
But they soon started to make important contributions in their own
right and, for the first time, we can acknowledge contributions by
individuals. By the Hellenistic period, the Greeks had presided over one of the most dramatic and important revolutions in mathematical thought of all time.
The ancient Greek numeral system, known as Attic or Herodianic numerals, was fully developed by about 450 BC, and in regular use possibly as early as the 7th Century BC. It was a base 10 system similar to the earlier Egyptian one (and even more similar to the later Roman system), with symbols for 1, 5, 10, 50, 100, 500 and 1,000 repeated as many times needed to represent the desired number. Addition was done by totalling separately the symbols (1s, 10s, 100s, etc) in the numbers to be added, and multiplication was a laborious process based on successive doublings (division was based on the inverse of this process).
But most of Greek mathematics was based on geometry. Thales, one of
the Seven Sages of Ancient Greece, who lived on the Ionian coast of
Asian Minor in the first half of the 6th Century BC, is usually
considered to have been the first to lay down guidelines for the
abstract development of geometry, although what we know of his work
(such as on similar and right triangles) now seems quite elementary.
Thales established what has become known as Thales' Theorem, whereby if a triangle is drawn within a circle with the long side as a diameter of the circle, then the opposite angle will always be a right angle (as well as some other related properties derived from this). He is also credited with another theorem, also known as Thales' Theorem or the Intercept Theorem, about the ratios of the line segments that are created if two intersecting lines are intercepted by a pair of parallels (and, by extension, the ratios of the sides of similar triangles).
To some extent, however, the legend of the 6th Century BC mathematician Pythagoras of Samos has become synonymous with the birth of Greek mathematics. Indeed, he is believed to have coined both the words "philosophy" ("love of wisdom") and "mathematics" ("that which is learned"). Pythagoras was perhaps the first to realize that a complete system of mathematics could be constructed, where geometric elements corresponded with numbers. Pythagoras’ Theorem (or the Pythagorean Theorem) is one of the best known of all mathematical theorems. But he remains a controversial figure, as we will see, and Greek mathematics was by no means limited to one man.
Three geometrical problems in particular, often referred to as the
Three Classical Problems, and all to be solved by purely geometric means
using only a straight edge and a compass, date back to the early days
of Greek geometry: “the squaring (or quadrature) of the circle”, “the
doubling (or duplicating) of the cube” and “the trisection of an angle”.
These intransigent problems were profoundly influential on future
geometry and led to many fruitful discoveries, although their actual
solutions (or, as it turned out, the proofs of their impossibility) had
to wait until the 19th Century.
Hippocrates of Chios (not to be confused with the great Greek physician Hippocrates of Kos) was one such Greek mathematician who applied himself to these problems during the 5th Century BC (his contribution to the “squaring the circle” problem is known as the Lune of Hippocrates). His influential book “The Elements”, dating to around 440 BC, was the first compilation of the elements of geometry, and his work was an important source for Euclid's later work.
It was the Greeks who first grappled with the idea of infinity, such
as described in the well-known paradoxes attributed to the philosopher
Zeno of Elea in the 5th Century BC. The most famous of his paradoxes is
that of Achilles and the Tortoise, which describes a theoretical race
between Achilles and a tortoise. Achilles gives the much slower tortoise
a head start, but by the time Achilles reaches the tortoise's starting
point, the tortoise has already moved ahead. By the time Achilles
reaches that point, the tortoise has moved on again, etc, etc, so that
in principle the swift Achilles can never catch up with the slow
tortoise.
Paradoxes such as this one and Zeno's so-called Dichotomy Paradox are based on the infinite divisibility of space and time, and rest on the idea that a half plus a quarter plus an eighth plus a sixteenth, etc, etc, to infinity will never quite equal a whole. The paradox stems, however, from the false assumption that it is impossible to complete an infinite number of discrete dashes in a finite time, although it is extremely difficult to definitively prove the fallacy. The ancient Greek Aristotle was the first of many to try to disprove the paradoxes, particularly as he was a firm believer that infinity could only ever be potential and not real.
Democritus, most famous for his prescient ideas about all matter being composed of tiny atoms, was also a pioneer of mathematics and geometry in the 5th - 4th Century BC, and he produced works with titles like "On Numbers", "On Geometrics", "On Tangencies", "On Mapping" and "On Irrationals", although these works have not survived. We do know that he was among the first to observe that a cone (or pyramid) has one-third the volume of a cylinder (or prism) with the same base and height, and he is perhaps the first to have seriously considered the division of objects into an infinite number of cross-sections.
However, it is certainly true that Pythagoras in particular greatly influenced those who came after him, including Plato, who established his famous Academy in Athens in 387 BC, and his protégé Aristotle, whose work on logic was regarded as definitive for over two thousand years. Plato the mathematician is best known for his description of the five Platonic solids, but the value of his work as a teacher and popularizer of mathematics can not be overstated.
Plato’s student Eudoxus of Cnidus is usually credited with the first implementation of the “method of exhaustion” (later developed by Archimedes), an early method of integration by successive approximations which he used for the calculation of the volume of the pyramid and cone. He also developed a general theory of proportion, which was applicable to incommensurable (irrational) magnitudes that cannot be expressed as a ratio of two whole numbers, as well as to commensurable (rational) magnitudes, thus extending Pythagoras’ incomplete ideas.
Perhaps the most important single contribution of the Greeks, though - and Pythagoras, Plato and Aristotle were all influential in this respect - was the idea of proof, and the deductive method of using logical steps to prove or disprove theorems from initial assumed axioms. Older cultures, like the Egyptians and the Babylonians, had relied on inductive reasoning, that is using repeated observations to establish rules of thumb. It is this concept of proof that give mathematics its power and ensures that proven theories are as true today as they were two thousand years ago, and which laid the foundations for the systematic approach to mathematics of Euclid and those who came after him.
PYTHAGORAS
It is sometimes claimed that we owe pure mathematics to Pythagoras, and he is often called the first "true" mathematician. But, although his contribution was clearly important, he nevertheless remains a controversial figure. He left no mathematical writings himself, and much of what we know about Pythagorean thought comes to us from the writings of Philolaus and other later Pythagorean scholars. Indeed, it is by no means clear whether many (or indeed any) of the theorems ascribed to him were in fact solved by Pythagoras personally or by his followers.
The school he established at Croton in southern Italy around 530 BC was the nucleus of a rather bizarre Pythagorean sect. Although Pythagorean thought was largely dominated by mathematics, it was also profoundly mystical, and Pythagoras imposed his quasi-religious philosophies, strict vegetarianism, communal living, secret rites and odd rules on all the members of his school (including bizarre and apparently random edicts about never urinating towards the sun, never marrying a woman who wears gold jewellery, never passing an ass lying in the street, never eating or even touching black fava beans, etc) .
The members were divided into the "mathematikoi" (or "learners"), who extended and developed the more mathematical and scientific work that Pythagoras himself began, and the "akousmatikoi" (or "listeners"), who focused on the more religious and ritualistic aspects of his teachings. There was always a certain amount of friction between the two groups and eventually the sect became caught up in some fierce local fighting and ultimately dispersed. Resentment built up against the secrecy and exclusiveness of the Pythagoreans and, in 460 BC, all their meeting places were burned and destroyed, with at least 50 members killed in Croton alone.
The over-riding dictum of Pythagoras's school was “All is number” or “God is number”, and the Pythagoreans effectively practised a kind of numerology or number-worship, and considered each number to have its own character and meaning. For example, the number one was the generator of all numbers; two represented opinion; three, harmony; four, justice; five, marriage; six, creation; seven, the seven planets or “wandering stars”; etc. Odd numbers were thought of as female and even numbers as male.
The holiest number of all was "tetractys" or ten, a triangular number
composed of the sum of one, two, three and four. It is a great tribute
to the Pythagoreans' intellectual achievements that they deduced the
special place of the number 10 from an abstract mathematical argument
rather than from something as mundane as counting the fingers on two
hands.
However, Pythagoras and his school - as well as a handful of other mathematicians of ancient Greece - was largely responsible for introducing a more rigorous mathematics than what had gone before, building from first principles using axioms and logic. Before Pythagoras, for example, geometry had been merely a collection of rules derived by empirical measurement. Pythagoras discovered that a complete system of mathematics could be constructed, where geometric elements corresponded with numbers, and where integers and their ratios were all that was necessary to establish an entire system of logic and truth.
He is mainly remembered for what has become known as Pythagoras’ Theorem (or the Pythagorean Theorem): that, for any right-angled triangle, the square of the length of the hypotenuse (the longest side, opposite the right angle) is equal to the sum of the square of the other two sides (or “legs”). Written as an equation: a2 + b2 = c2. What Pythagoras and his followers did not realize is that this also works for any shape: thus, the area of a pentagon on the hypotenuse is equal to the sum of the pentagons on the other two sides, as it does for a semi-circle or any other regular (or even irregular( shape.
The simplest and most commonly quoted example of a Pythagorean triangle is one with sides of 3, 4 and 5 units (32 + 42 = 52,
as can be seen by drawing a grid of unit squares on each side as in the
diagram at right), but there are a potentially infinite number of other
integer “Pythagorean triples”, starting with (5, 12 13), (6, 8, 10),
(7, 24, 25), (8, 15, 17), (9, 40, 41), etc. It should be noted, however
that (6, 8, 10) is not what is known as a “primitive” Pythagorean
triple, because it is just a multiple of (3, 4, 5).
Pythagoras’ Theorem and the properties of right-angled triangles seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry, and it was touched on in some of the most ancient mathematical texts from Babylon and Egypt, dating from over a thousand years earlier. One of the simplest proofs comes from ancient China, and probably dates from well before Pythagoras' birth. It was Pythagoras, though, who gave the theorem its definitive form, although it is not clear whether Pythagoras himself definitively proved it or merely described it. Either way, it has become one of the best-known of all mathematical theorems, and as many as 400 different proofs now exist, some geometrical, some algebraic, some involving advanced differential equations, etc.
It soom became apparent, though, that non-integer solutions were also possible, so that an isosceles triangle with sides 1, 1 and √2, for example, also has a right angle, as the Babylonians had discovered centuries earlier. However, when Pythagoras’s student Hippasus tried to calculate the value of √2, he found that it was not possible to express it as a fraction, thereby indicating the potential existence of a whole new world of numbers, the irrational numbers (numbers that can not be expressed as simple fractions of integers). This discovery rather shattered the elegant mathematical world built up by Pythagoras and his followers, and the existence of a number that could not be expressed as the ratio of two of God's creations (which is how they thought of the integers) jeopardized the cult's entire belief system.
Poor Hippasus was apparently drowned by the secretive Pythagoreans for broadcasting this important discovery to the outside world. But the replacement of the idea of the divinity of the integers by the richer concept of the continuum, was an essential development in mathematics. It marked the real birth of Greek geometry, which deals with lines and planes and angles, all of which are continuous and not discrete.
Among his other achievements in geometry, Pythagoras (or at least his followers, the Pythagoreans) also realized that the sum of the angles of a triangle is equal to two right angles (180°), and probably also the generalization which states that the sum of the interior angles of a polygon with n sides is equal to (2n - 4) right angles, and that the sum of its exterior angles equals 4 right angles. They were able to construct figures of a given area, and to use simple geometrical algebra, for example to solve equations such as a(a - x) = x2 by geometrical means.
The Pythagoreans also established the foundations of number theory, with their investigations of triangular, square and also perfect numbers (numbers that are the sum of their divisors). They discovered several new properties of square numbers, such as that the square of a number n is equal to the sum of the first n odd numbers (e.g. 42 = 16 = 1 + 3 + 5 + 7). They also discovered at least the first pair of amicable numbers, 220 and 284 (amicable numbers are pairs of numbers for which the sum of the divisors of one number equals the other number, e.g. the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, of which the sum is 284; and the proper divisors of 284 are 1, 2, 4, 71, and 142, of which the sum is 220).
Pythagoras is also credited with the discovery that the intervals
between harmonious musical notes always have whole number ratios. For
instance, playing half a length of a guitar string gives the same note
as the open string, but an octave higher; a third of a length gives a
different but harmonious note; etc. Non-whole number ratios, on the
other hand, tend to give dissonant sounds. In this way, Pythagoras
described the first four overtones which create the common intervals
which have become the primary building blocks of musical harmony: the
octave (1:1), the perfect fifth (3:2), the perfect fourth (4:3) and the
major third (5:4). The oldest way of tuning the 12-note chromatic scale
is known as Pythagorean tuning, and it is based on a stack of perfect
fifths, each tuned in the ratio 3:2.
The mystical Pythagoras was so excited by this discovery that he became convinced that the whole universe was based on numbers, and that the planets and stars moved according to mathematical equations, which corresponded to musical notes, and thus produced a kind of symphony, the “Musical Universalis” or “Music of the Spheres
PLATO
Although usually remembered today as a philosopher, Plato was also one of ancient Greece’s most important patrons of mathematics. Inspired by Pythagoras, he founded his Academy in Athens in 387 BC, where he stressed mathematics as a way of understanding more about reality. In particular, he was convinced that geometry was the key to unlocking the secrets of the universe. The sign above the Academy entrance read: “Let no-one ignorant of geometry enter here”.
Plato played an important role in encouraging and inspiring Greek intellectuals to study mathematics as well as philosophy. His Academy taught mathematics as a branch of philosophy, as Pythagoras had done, and the first 10 years of the 15 year course at the Academy involved the study of science and mathematics, including plane and solid geometry, astronomy and harmonics. Plato became known as the "maker of mathematicians", and his Academy boasted some of the most prominent mathematicians of the ancient world, including Eudoxus, Theaetetus and Archytas.
He demanded of his students accurate definitions, clearly stated assumptions, and logical deductive proof, and he insisted that geometric proofs be demonstrated with no aids other than a straight edge and a compass. Among the many mathematical problems Plato posed for his students’ investigation were the so-called Three Classical Problems (“squaring the circle”, “doubling the cube” and “trisecting the angle”) and to some extent these problems have become identified with Plato, although he was not the first to pose them.
Plato the mathematician is perhaps best known for his identification
of 5 regular symmetrical 3-dimensional shapes, which he maintained were
the basis for the whole universe, and which have become known as the
Platonic Solids: the tetrahedron (constructed of 4 regular triangles,
and which for Plato represented fire), the octahedron (composed of 8
triangles, representing air), the icosahedron (composed of 20 triangles,
and representing water), the cube (composed of 6 squares, and
representing earth), and the dodecahedron (made up of 12 pentagons,
which Plato obscurely described as “the god used for arranging the
constellations on the whole heaven”).
The tetrahedron, cube and dodecahedron were probably familiar to Pythagoras, and the octahedron and icosahedron were probably discovered by Theaetetus, a contemporary of Plato. Furthermore, it fell to Euclid, half a century later, to prove that these were the only possible convex regular polyhedra. But they nevertheless became popularly known as the Platonic Solids, and inspired mathematicians and geometers for many centuries to come. For example, around 1600, the German astronomer Johannes Kepler devised an ingenious system of nested Platonic solids and spheres to approximate quite well the distances of the known planets from the Sun (although he was enough of a scientist to abandon his elegant model when it proved to be not accurate enough).
The ancient Greek numeral system, known as Attic or Herodianic numerals, was fully developed by about 450 BC, and in regular use possibly as early as the 7th Century BC. It was a base 10 system similar to the earlier Egyptian one (and even more similar to the later Roman system), with symbols for 1, 5, 10, 50, 100, 500 and 1,000 repeated as many times needed to represent the desired number. Addition was done by totalling separately the symbols (1s, 10s, 100s, etc) in the numbers to be added, and multiplication was a laborious process based on successive doublings (division was based on the inverse of this process).
|
Thales' Intercept Theorem |
Thales established what has become known as Thales' Theorem, whereby if a triangle is drawn within a circle with the long side as a diameter of the circle, then the opposite angle will always be a right angle (as well as some other related properties derived from this). He is also credited with another theorem, also known as Thales' Theorem or the Intercept Theorem, about the ratios of the line segments that are created if two intersecting lines are intercepted by a pair of parallels (and, by extension, the ratios of the sides of similar triangles).
To some extent, however, the legend of the 6th Century BC mathematician Pythagoras of Samos has become synonymous with the birth of Greek mathematics. Indeed, he is believed to have coined both the words "philosophy" ("love of wisdom") and "mathematics" ("that which is learned"). Pythagoras was perhaps the first to realize that a complete system of mathematics could be constructed, where geometric elements corresponded with numbers. Pythagoras’ Theorem (or the Pythagorean Theorem) is one of the best known of all mathematical theorems. But he remains a controversial figure, as we will see, and Greek mathematics was by no means limited to one man.
|
The Three Classical Problems |
Hippocrates of Chios (not to be confused with the great Greek physician Hippocrates of Kos) was one such Greek mathematician who applied himself to these problems during the 5th Century BC (his contribution to the “squaring the circle” problem is known as the Lune of Hippocrates). His influential book “The Elements”, dating to around 440 BC, was the first compilation of the elements of geometry, and his work was an important source for Euclid's later work.
|
Zeno's Paradox of Achilles and the Tortoise |
Paradoxes such as this one and Zeno's so-called Dichotomy Paradox are based on the infinite divisibility of space and time, and rest on the idea that a half plus a quarter plus an eighth plus a sixteenth, etc, etc, to infinity will never quite equal a whole. The paradox stems, however, from the false assumption that it is impossible to complete an infinite number of discrete dashes in a finite time, although it is extremely difficult to definitively prove the fallacy. The ancient Greek Aristotle was the first of many to try to disprove the paradoxes, particularly as he was a firm believer that infinity could only ever be potential and not real.
Democritus, most famous for his prescient ideas about all matter being composed of tiny atoms, was also a pioneer of mathematics and geometry in the 5th - 4th Century BC, and he produced works with titles like "On Numbers", "On Geometrics", "On Tangencies", "On Mapping" and "On Irrationals", although these works have not survived. We do know that he was among the first to observe that a cone (or pyramid) has one-third the volume of a cylinder (or prism) with the same base and height, and he is perhaps the first to have seriously considered the division of objects into an infinite number of cross-sections.
However, it is certainly true that Pythagoras in particular greatly influenced those who came after him, including Plato, who established his famous Academy in Athens in 387 BC, and his protégé Aristotle, whose work on logic was regarded as definitive for over two thousand years. Plato the mathematician is best known for his description of the five Platonic solids, but the value of his work as a teacher and popularizer of mathematics can not be overstated.
Plato’s student Eudoxus of Cnidus is usually credited with the first implementation of the “method of exhaustion” (later developed by Archimedes), an early method of integration by successive approximations which he used for the calculation of the volume of the pyramid and cone. He also developed a general theory of proportion, which was applicable to incommensurable (irrational) magnitudes that cannot be expressed as a ratio of two whole numbers, as well as to commensurable (rational) magnitudes, thus extending Pythagoras’ incomplete ideas.
Perhaps the most important single contribution of the Greeks, though - and Pythagoras, Plato and Aristotle were all influential in this respect - was the idea of proof, and the deductive method of using logical steps to prove or disprove theorems from initial assumed axioms. Older cultures, like the Egyptians and the Babylonians, had relied on inductive reasoning, that is using repeated observations to establish rules of thumb. It is this concept of proof that give mathematics its power and ensures that proven theories are as true today as they were two thousand years ago, and which laid the foundations for the systematic approach to mathematics of Euclid and those who came after him.
PYTHAGORAS
It is sometimes claimed that we owe pure mathematics to Pythagoras, and he is often called the first "true" mathematician. But, although his contribution was clearly important, he nevertheless remains a controversial figure. He left no mathematical writings himself, and much of what we know about Pythagorean thought comes to us from the writings of Philolaus and other later Pythagorean scholars. Indeed, it is by no means clear whether many (or indeed any) of the theorems ascribed to him were in fact solved by Pythagoras personally or by his followers.
The school he established at Croton in southern Italy around 530 BC was the nucleus of a rather bizarre Pythagorean sect. Although Pythagorean thought was largely dominated by mathematics, it was also profoundly mystical, and Pythagoras imposed his quasi-religious philosophies, strict vegetarianism, communal living, secret rites and odd rules on all the members of his school (including bizarre and apparently random edicts about never urinating towards the sun, never marrying a woman who wears gold jewellery, never passing an ass lying in the street, never eating or even touching black fava beans, etc) .
The members were divided into the "mathematikoi" (or "learners"), who extended and developed the more mathematical and scientific work that Pythagoras himself began, and the "akousmatikoi" (or "listeners"), who focused on the more religious and ritualistic aspects of his teachings. There was always a certain amount of friction between the two groups and eventually the sect became caught up in some fierce local fighting and ultimately dispersed. Resentment built up against the secrecy and exclusiveness of the Pythagoreans and, in 460 BC, all their meeting places were burned and destroyed, with at least 50 members killed in Croton alone.
The over-riding dictum of Pythagoras's school was “All is number” or “God is number”, and the Pythagoreans effectively practised a kind of numerology or number-worship, and considered each number to have its own character and meaning. For example, the number one was the generator of all numbers; two represented opinion; three, harmony; four, justice; five, marriage; six, creation; seven, the seven planets or “wandering stars”; etc. Odd numbers were thought of as female and even numbers as male.
|
The Pythagorean Tetractys |
However, Pythagoras and his school - as well as a handful of other mathematicians of ancient Greece - was largely responsible for introducing a more rigorous mathematics than what had gone before, building from first principles using axioms and logic. Before Pythagoras, for example, geometry had been merely a collection of rules derived by empirical measurement. Pythagoras discovered that a complete system of mathematics could be constructed, where geometric elements corresponded with numbers, and where integers and their ratios were all that was necessary to establish an entire system of logic and truth.
He is mainly remembered for what has become known as Pythagoras’ Theorem (or the Pythagorean Theorem): that, for any right-angled triangle, the square of the length of the hypotenuse (the longest side, opposite the right angle) is equal to the sum of the square of the other two sides (or “legs”). Written as an equation: a2 + b2 = c2. What Pythagoras and his followers did not realize is that this also works for any shape: thus, the area of a pentagon on the hypotenuse is equal to the sum of the pentagons on the other two sides, as it does for a semi-circle or any other regular (or even irregular( shape.
|
Pythagoras' (Pythagorean) Theorem |
Pythagoras’ Theorem and the properties of right-angled triangles seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry, and it was touched on in some of the most ancient mathematical texts from Babylon and Egypt, dating from over a thousand years earlier. One of the simplest proofs comes from ancient China, and probably dates from well before Pythagoras' birth. It was Pythagoras, though, who gave the theorem its definitive form, although it is not clear whether Pythagoras himself definitively proved it or merely described it. Either way, it has become one of the best-known of all mathematical theorems, and as many as 400 different proofs now exist, some geometrical, some algebraic, some involving advanced differential equations, etc.
It soom became apparent, though, that non-integer solutions were also possible, so that an isosceles triangle with sides 1, 1 and √2, for example, also has a right angle, as the Babylonians had discovered centuries earlier. However, when Pythagoras’s student Hippasus tried to calculate the value of √2, he found that it was not possible to express it as a fraction, thereby indicating the potential existence of a whole new world of numbers, the irrational numbers (numbers that can not be expressed as simple fractions of integers). This discovery rather shattered the elegant mathematical world built up by Pythagoras and his followers, and the existence of a number that could not be expressed as the ratio of two of God's creations (which is how they thought of the integers) jeopardized the cult's entire belief system.
Poor Hippasus was apparently drowned by the secretive Pythagoreans for broadcasting this important discovery to the outside world. But the replacement of the idea of the divinity of the integers by the richer concept of the continuum, was an essential development in mathematics. It marked the real birth of Greek geometry, which deals with lines and planes and angles, all of which are continuous and not discrete.
Among his other achievements in geometry, Pythagoras (or at least his followers, the Pythagoreans) also realized that the sum of the angles of a triangle is equal to two right angles (180°), and probably also the generalization which states that the sum of the interior angles of a polygon with n sides is equal to (2n - 4) right angles, and that the sum of its exterior angles equals 4 right angles. They were able to construct figures of a given area, and to use simple geometrical algebra, for example to solve equations such as a(a - x) = x2 by geometrical means.
The Pythagoreans also established the foundations of number theory, with their investigations of triangular, square and also perfect numbers (numbers that are the sum of their divisors). They discovered several new properties of square numbers, such as that the square of a number n is equal to the sum of the first n odd numbers (e.g. 42 = 16 = 1 + 3 + 5 + 7). They also discovered at least the first pair of amicable numbers, 220 and 284 (amicable numbers are pairs of numbers for which the sum of the divisors of one number equals the other number, e.g. the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, of which the sum is 284; and the proper divisors of 284 are 1, 2, 4, 71, and 142, of which the sum is 220).
|
Pythagoras is credited with the discovery of the ratios between harmonious musical tones |
The mystical Pythagoras was so excited by this discovery that he became convinced that the whole universe was based on numbers, and that the planets and stars moved according to mathematical equations, which corresponded to musical notes, and thus produced a kind of symphony, the “Musical Universalis” or “Music of the Spheres
PLATO
Although usually remembered today as a philosopher, Plato was also one of ancient Greece’s most important patrons of mathematics. Inspired by Pythagoras, he founded his Academy in Athens in 387 BC, where he stressed mathematics as a way of understanding more about reality. In particular, he was convinced that geometry was the key to unlocking the secrets of the universe. The sign above the Academy entrance read: “Let no-one ignorant of geometry enter here”.
Plato played an important role in encouraging and inspiring Greek intellectuals to study mathematics as well as philosophy. His Academy taught mathematics as a branch of philosophy, as Pythagoras had done, and the first 10 years of the 15 year course at the Academy involved the study of science and mathematics, including plane and solid geometry, astronomy and harmonics. Plato became known as the "maker of mathematicians", and his Academy boasted some of the most prominent mathematicians of the ancient world, including Eudoxus, Theaetetus and Archytas.
He demanded of his students accurate definitions, clearly stated assumptions, and logical deductive proof, and he insisted that geometric proofs be demonstrated with no aids other than a straight edge and a compass. Among the many mathematical problems Plato posed for his students’ investigation were the so-called Three Classical Problems (“squaring the circle”, “doubling the cube” and “trisecting the angle”) and to some extent these problems have become identified with Plato, although he was not the first to pose them.
|
Platonic Solids |
The tetrahedron, cube and dodecahedron were probably familiar to Pythagoras, and the octahedron and icosahedron were probably discovered by Theaetetus, a contemporary of Plato. Furthermore, it fell to Euclid, half a century later, to prove that these were the only possible convex regular polyhedra. But they nevertheless became popularly known as the Platonic Solids, and inspired mathematicians and geometers for many centuries to come. For example, around 1600, the German astronomer Johannes Kepler devised an ingenious system of nested Platonic solids and spheres to approximate quite well the distances of the known planets from the Sun (although he was enough of a scientist to abandon his elegant model when it proved to be not accurate enough).
No comments:
Post a Comment