Friday, 29 August 2014

History of the Rubik's Cube

History 
In 1974, a young Professor of architecture in Budapest (Hungary) named Erno Rubik created an object that was not supposed to be possible. His solid cube twisted and turned - and still it did not break or fall apart. With colourful stickers on its sides, the Cube got scrambled and thus emerged the first “Rubik’s Cube”. It took well over a month for Erno to work out the solution to his puzzle. Little did he expect that Rubik’s Cube would become the world’s best-selling toy ever. As a teacher, Erno was always looking for new, more exciting ways to present information, so he used the Cube’s first model to help him explain to his students about spatial relationships. Erno has always thought of the Cube primarily as an object of art, a mobile sculpture symbolizing stark contrasts of the human condition: bewildering problems and triumphant intelligence; simplicity and complexity; stability and dynamism; order and chaos.For this magic object to become the most popular toy in history a few chance meetings had to take place.

The first Magic Cubes
The first Magic Cubes
As with many of the world’s greatest inventions it did not have an easy birth. After presenting his prototype to his students and friends Erno began to realise the potential of his cube. The next step was to get it manufactured. The first cubes were made and distributed in Hungary by Politechnika. These early Cubes, marketed as “Magic Cubes” (or “Buvos Kocka”), were twice the weight of the ones available later. In the 70’s Hungary was part of the Communist regime behind the Iron Curtain, and any imports or exports where tightly controlled. How was Erno’s invention, that had become a major success in Hungary, going to make it into the hands of every child of the 80’s?


The first step in the Rubik’s Cube’s battle to worldwide recognition was to get out of Hungary. This was accomplished partly by the enchanted mathematicians who took the Cubes to international conferences and partly by an expat Hungarian entrepreneur who took the cube to the Nuremberg Toy Fair in 1979. It was at there that Tom Kremer, a toy specialist, agreed to sell it to the rest of the world. Tom’s unrelenting belief in the Cube finally resulted in the Ideal Toy Company taking on distribution of the “Magic Cube”. Ideal Toy’s executives thought that the name had overtones of witchcraft and after going through several possibilities the name: “Rubik’s Cube” was decided on, and the icon was born.

In the time since its international launch in 1980 an estimated 350 million Rubik’s Cubes have been sold. Approximately one in seven people alive have played with a Rubik’s Cube. This little six color cube has gone on to represent a decade. It has started art movements (Rubik Cubism); pop videos, Hollywood movies and even had its own TV show; it has come to represent both genius and confusion; it has birthed a sport (Speedcubing); and it has even been into space.
The beauty of the Rubik’s Cube is that when you look at a scrambled one, you know exactly what you need to do without instruction. Yet without instruction it is almost impossible to solve, making it one of the most infuriating and engaging inventions ever conceived

aking advantage of an initial shortage of Cubes, many imitations and variations appeared, many of which may have violated one or more patents. Today, the patents have expired and many Chinese companies produce copies of, and in some cases improvements upon, the Rubik and V-Cube designs. The most popular are Bao Daqing's DaYan company, who make the GuHong and ZhanChi and now PanShi models, amongst others. They are often preferred over the originals by expert speed cubers because of their ease of movement.

Mechanics


Rubik's Cube partially disassembled

Rubik's Cube fully disassembled
A standard Rubik's Cube measures 5.7 cm (approximately 2¼ inches) on each side. The puzzle consists of twenty-six unique miniature cubes, also called "cubies" or "cubelets". Each of these includes a concealed inward extension that interlocks with the other cubes, while permitting them to move to different locations. However, the centre cube of each of the six faces is merely a single square façade; all six are affixed to the core mechanism. These provide structure for the other pieces to fit into and rotate around. So there are twenty-one pieces: a single core piece consisting of three intersecting axes holding the six centre squares in place but letting them rotate, and twenty smaller plastic pieces which fit into it to form the assembled puzzle.
Each of the six centre pieces pivots on a screw (fastener) held by the centre piece, a "3-D cross". A spring between each screw head and its corresponding piece tensions the piece inward, so that collectively, the whole assembly remains compact, but can still be easily manipulated. The screw can be tightened or loosened to change the "feel" of the Cube. Newer official Rubik's brand cubes have rivets instead of screws and cannot be adjusted.
The Cube can be taken apart without much difficulty, typically by rotating the top layer by 45° and then prying one of its edge cubes away from the other two layers. Consequently it is a simple process to "solve" a Cube by taking it apart and reassembling it in a solved state.
There are six central pieces which show one coloured face, twelve edge pieces which show two coloured faces, and eight corner pieces which show three coloured faces. Each piece shows a unique colour combination, but not all combinations are present (for example, if red and orange are on opposite sides of the solved Cube, there is no edge piece with both red and orange sides). The location of these cubes relative to one another can be altered by twisting an outer third of the Cube 90°, 180° or 270°, but the location of the coloured sides relative to one another in the completed state of the puzzle cannot be altered: it is fixed by the relative positions of the centre squares. However, Cubes with alternative colour arrangements also exist; for example, with the yellow face opposite the green, the blue face opposite the white, and red and orange remaining opposite each other.
Douglas Hofstadter, in the July 1982 issue of Scientific American, pointed out that Cubes could be coloured in such a way as to emphasise the corners or edges, rather than the faces as the standard colouring does; but neither of these alternative colourings has ever become popular.[20]

Mathematics

Permutations

The original (3×3×3) Rubik's Cube has eight corners and twelve edges. There are 8! (40,320) ways to arrange the corner cubes. Seven can be oriented independently, and the orientation of the eighth depends on the preceding seven, giving 37 (2,187) possibilities. There are 12!/2 (239,500,800) ways to arrange the edges, since an even permutation of the corners implies an even permutation of the edges as well. (When arrangements of centres are also permitted, as described below, the rule is that the combined arrangement of corners, edges, and centres must be an even permutation.) Eleven edges can be flipped independently, with the flip of the twelfth depending on the preceding ones, giving 211 (2,048) possibilities.[26]
 {8! \times 3^7 \times (12!/2) \times 2^{11}} = 43,252,003,274,489,856,000
which is approximately 43 quintillion.[27]
The puzzle is often advertised as having only "billions" of positions, as the larger numbers are unfamiliar to many. To put this into perspective, if one had as many standard sized Rubik's Cubes as there are permutations, one could cover the Earth's surface 275 times.
The preceding figure is limited to permutations that can be reached solely by turning the sides of the cube. If one considers permutations reached through disassembly of the cube, the number becomes twelve times as large:
 {8! \times 3^8 \times 12! \times 2^{12}} = 519,024,039,293,878,272,000.
which is approximately 519 quintillion[27] possible arrangements of the pieces that make up the Cube, but only one in twelve of these are actually solvable. This is because there is no sequence of moves that will swap a single pair of pieces or rotate a single corner or edge cube. Thus there are twelve possible sets of reachable configurations, sometimes called "universes" or "orbits", into which the Cube can be placed by dismantling and reassembling it.

Centre faces

The original Rubik's Cube had no orientation markings on the centre faces (although some carried the words "Rubik's Cube" on the centre square of the white face), and therefore solving it does not require any attention to orienting those faces correctly. However, with marker pens, one could, for example, mark the central squares of an unscrambled Cube with four coloured marks on each edge, each corresponding to the colour of the adjacent face; a cube marked in this way is referred to as a "supercube". Some Cubes have also been produced commercially with markings on all of the squares, such as the Lo Shu magic square or playing card suits. Thus one can nominally solve a Cube yet have the markings on the centres rotated; it then becomes an additional test to solve the centres as well.
Marking the Rubik's Cube's centres increases its difficulty because this expands the set of distinguishable possible configurations. There are 46/2 (2,048) ways to orient the centres, since an even permutation of the corners implies an even number of quarter turns of centres as well. In particular, when the Cube is unscrambled apart from the orientations of the central squares, there will always be an even number of centre squares requiring a quarter turn. Thus orientations of centres increases the total number of possible Cube permutations from 43,252,003,274,489,856,000 (4.3×1019) to 88,580,102,706,155,225,088,000 (8.9×1022).[28]
When turning a cube over is considered to be a change in permutation then we must also count arrangements of the centre faces. Nominally there are 6! ways to arrange the six centre faces of the cube, but only 24 of these are achievable without disassembly of the cube. When the orientations of centres are also counted, as above, this increases the total number of possible Cube permutations from 88,580,102,706,155,225,088,000 (8.9×1022) to 2,125,922,464,947,725,402,112,000 (2.1×1024).

Algorithms

In Rubik's cubers' parlance, a memorised sequence of moves that has a desired effect on the cube, is called an algorithm. This terminology is derived from the mathematical use of algorithm, meaning a list of well-defined instructions for performing a task from a given initial state, through well-defined successive states, to a desired end-state. Each method of solving the Rubik's Cube employs its own set of algorithms, together with descriptions of what effect the algorithm has, and when it can be used to bring the cube closer to being solved.
Many algorithms are designed to transform only a small part of the cube without interfering with other parts that have already been solved, so that they can be applied repeatedly to different parts of the cube until the whole is solved. For example, there are well-known algorithms for cycling three corners without changing the rest of the puzzle, or flipping the orientation of a pair of edges while leaving the others intact.
Some algorithms do have a certain desired effect on the cube (for example, swapping two corners) but may also have the side-effect of changing other parts of the cube (such as permuting some edges). Such algorithms are often simpler than the ones without side-effects, and are employed early on in the solution when most of the puzzle has not yet been solved and the side-effects are not important. Most are long and difficult to memorize. Towards the end of the solution, the more specific (and usually more complicated) algorithms are used instead.

Relevance and application of mathematical group theory

Rubik's Cube lends itself to the application of mathematical group theory, which has been helpful for deducing certain algorithms - in particular, those which have a commutator structure, namely XYX−1Y−1 (where X and Y are specific moves or move-sequences and X−1 and Y−1 are their respective inverses), or a conjugate structure, namely XYX−1, often referred to by speedcubers colloquially as a "setup move".[29] In addition, the fact that there are well-defined subgroups within the Rubik's Cube group, enables the puzzle to be learned and mastered by moving up through various self-contained "levels of Difficulty". For example, one such "level" could involve solving cubes which have been scrambled using only 180-degree turns. These subgroups are the principle underlying the computer cubing methods Thistlethwaite and Kociemba, which solve the cube by further reducing it to another subgroup.

Solutions

Move notation

Many 3×3×3 Rubik's Cube enthusiasts use a notation developed by David Singmaster to denote a sequence of moves, referred to as "Singmaster notation".[30] Its relative nature allows algorithms to be written in such a way that they can be applied regardless of which side is designated the top or how the colours are organised on a particular cube.
  • F (Front): the side currently facing the solver
  • B (Back): the side opposite the front
  • U (Up): the side above or on top of the front side
  • D (Down): the side opposite the top, underneath the Cube
  • L (Left): the side directly to the left of the front
  • R (Right): the side directly to the right of the front
  • ƒ (Front two layers): the side facing the solver and the corresponding middle layer
  • b (Back two layers): the side opposite the front and the corresponding middle layer
  • u (Up two layers) : the top side and the corresponding middle layer
  • d (Down two layers) : the bottom layer and the corresponding middle layer
  • l (Left two layers) : the side to the left of the front and the corresponding middle layer
  • r (Right two layers) : the side to the right of the front and the corresponding middle layer
  • x (rotate): rotate the entire Cube on R
  • y (rotate): rotate the entire Cube on U
  • z (rotate): rotate the entire Cube on F
When a prime symbol ( ′ ) follows a letter, it denotes a face turn counter-clockwise, while a letter without a prime symbol denotes a clockwise turn. A letter followed by a 2 (occasionally a superscript 2) denotes two turns, or a 180-degree turn. R is right side clockwise, but R' is right side counter-clockwise. The letters x, y, and z are used to indicate that the entire Cube should be turned about one of its axes, corresponding to R, U, and F turns respectively. When x, y or z are primed, it is an indication that the cube must be rotated in the opposite direction. When they are squared, the cube must be rotated 180 degrees.
The most common deviation from Singmaster notation, and in fact the current official standard, is to use "w", for "wide", instead of lowercase letters to represent moves of two layers; thus, a move of Rw is equivalent to one of r.[31]
For methods using middle-layer turns (particularly corners-first methods) there is a generally accepted "MES" extension to the notation where letters M, E, and S denote middle layer turns. It was used e.g. in Marc Waterman's Algorithm.[32]
  • M (Middle): the layer between L and R, turn direction as L (top-down)
  • E (Equator): the layer between U and D, turn direction as D (left-right)
  • S (Standing): the layer between F and B, turn direction as F
The 4×4×4 and larger cubes use an extended notation to refer to the additional middle layers. Generally speaking, uppercase letters (F B U D L R) refer to the outermost portions of the cube (called faces). Lowercase letters (f b u d l r) refer to the inner portions of the cube (called slices). An asterisk (L*), a number in front of it (2L), or two layers in parenthesis (Ll), means to turn the two layers at the same time (both the inner and the outer left faces) For example: (Rr)' lf' means to turn the two rightmost layers counterclockwise, then the left inner layer twice, and then the inner front layer counterclockwise. By extension, for cubes of 6x6 and larger, moves of three layers are notated by the number 3, for example 3L.
An alternative notation, Wolstenholme notation, is designed to make memorizing sequences of moves easier for novices. This notation uses the same letters for faces except it replaces U with T (top), so that all are consonants. The key difference is the use of the vowels O, A and I for clockwise, counterclockwise and 180-degree turns, which results in word-like sequences such as LOTA RATO LATA ROTI (equivalent to LU′R′UL′U′RU2 in Singmaster notation). Addition of a C implies rotation of the entire cube, so ROC is the clockwise rotation of the cube around its right face.

Optimal solutions

Although there are a significant number of possible permutations for the Rubik's Cube, a number of solutions have been developed which allow solving the cube in well under 100 moves.
Many general solutions for the Rubik's Cube have been discovered independently. David Singmaster first published his solution in the book Notes on Rubik's "Magic Cube" in 1981.[29] This solution involves solving the Cube layer by layer, in which one layer (designated the top) is solved first, followed by the middle layer, and then the final and bottom layer. After sufficient practice, solving the Cube layer by layer can be done in under one minute. Other general solutions include "corners first" methods or combinations of several other methods. In 1982, David Singmaster and Alexander Frey hypothesised that the number of moves needed to solve the Rubik's Cube, given an ideal algorithm, might be in "the low twenties".[33] In 2007, Daniel Kunkle and Gene Cooperman used computer search methods to demonstrate that any 3×3×3 Rubik's Cube configuration can be solved in 26 moves or fewer.[34][35][36] In 2008, Tomas Rokicki lowered that number to 22 moves,[37][38][39] and in July 2010, a team of researchers including Rokicki, working with Google, proved the so-called "God's number" to be 20.[40][41] This is optimal, since there exist some starting positions which require at least 20 moves to solve. More generally, it has been shown that an n × n × n Rubik's Cube can be solved optimally in Θ(n2 / log(n)) moves.[42]
In 1981, schoolboy Patrick Bossert developed a solution for solving the cube, along with a graphical notation, designed to be easily understood by novices.[43] It was subsequently published as You Can Do The Cube and became a best-seller.[44]
A solution commonly used by speed cubers was developed by Jessica Fridrich. It is similar to the layer-by-layer method but employs the use of a large number of algorithms, especially for orienting and permuting the last layer. The cross is done first, followed by first layer corners and second layer edges simultaneously, with each corner paired up with a second-layer edge piece, thus completing the first two layers (F2L). This is then followed by orienting the last layer, then permuting the last layer (OLL and PLL respectively). Fridrich's solution requires learning roughly 120 algorithms but allows the Cube to be solved in only 55 moves on average.
Philip Marshall's The Ultimate Solution to Rubik's Cube takes a different approach, averaging only 65 twists yet requiring the memorization of only two algorithms. The cross is solved first, followed by the remaining edges, then five corners, and finally the last three corners. [45]
A now well-known method was developed by Lars Petrus. In this method, a 2×2×2 section is solved first, followed by a 2×2×3, and then the incorrect edges are solved using a three-move algorithm, which eliminates the need for a possible 32-move algorithm later. The principle behind this is that in layer-by-layer you must constantly break and fix the first layer; the 2×2×2 and 2×2×3 sections allow three or two layers to be turned without ruining progress. One of the advantages of this method is that it tends to give solutions in fewer moves.
The Roux Method, developed by Gilles Roux, is similar to the Petrus method in that it relies on block building rather than layers, but derives from corners-first methods. In Roux, a 3×2×1 block is solved, followed by another 3×2×1 on the opposite side. Next the corners of the top layer are solved. The cube can then be solved using only moves of the U layer and M slice.[46]
In 1997, Denny Dedmore published a solution described using diagrammatic icons representing the moves to be made, instead of the usual notation.[47]

Competitions and records


First Rubik's Cube World Championship, Budapest, June 5, 1982. Stamp of Hungary, 1982.

Speedcubing competitions

Speedcubing (or speedsolving) is the practice of trying to solve a Rubik's Cube in the shortest time possible. There are a number of speedcubing competitions that take place around the world.
The first world championship organised by the Guinness Book of World Records was held in Munich on March 13, 1981. All Cubes were moved 40 times and lubricated with petroleum jelly. The official winner, with a record of 38 seconds, was Jury Froeschl, born in Munich. The first international world championship was held in Budapest on June 5, 1982, and was won by Minh Thai, a Vietnamese student from Los Angeles, with a time of 22.95 seconds.
Since 2003, the winner of a competition is determined by taking the average time of the middle three of five attempts. However, the single best time of all tries is also recorded. The World Cube Association maintains a history of world records.[48] In 2004, the WCA made it mandatory to use a special timing device called a Stackmat timer.
In addition to official competitions, informal alternative competitions have been held which invite participants to solve the Cube in unusual situations. Some such situations include:
  • Blindfolded solving[49]
  • Solving the Cube with one person blindfolded and the other person saying what moves to make, known as "Team Blindfold"
  • Multiple blindfolded solving, or "multi-blind", in which the contestant solves any number of cubes blindfolded in a row [50]
  • Solving the Cube underwater in a single breath[51]
  • Solving the Cube using a single hand[52]
  • Solving the Cube with one's feet[53]
  • Solving the Cube in the fewest possible moves [54]
Of these informal competitions, the World Cube Association sanctions only blindfolded, multiple blindfolded, fewest moves, one-handed, and feet solving as official competition events.[55]
In blindfolded solving, the contestant first studies the scrambled cube (i.e., looking at it normally with no blindfold), and is then blindfolded before beginning to turn the cube's faces. Their recorded time for this event includes both the time spent examining the cube and the time spent manipulating it.
In multiple blindfolded, all of the cubes are memorized, and then all of the cubes are solved once blindfolded; thus, the main challenge is memorizing many - often ten or more - separate cube positions. The event is scored not by time but by the number of solved cubes minus the number of unsolved cubes after one hour has elapsed.
In fewest moves solving, the contestant is given one hour to find his or her solution, and must write it down as an algorithm.

Records

  • Single time: The current world record for single time on a 3×3×3 Rubik's Cube was set by Mats Valk of the Netherlands in March 2013 with a time of 5.55 seconds at the Zonhoven Open in Belgium.
  • Average time: The world record for average time per solve was set by Feliks Zemdegs at the Melbourne Cube Day 2013, with a 6.54 second average solve time.[56]
  • One-handed solving: A time of 9.03 seconds was made by Feliks Zemdegs at the Lifestyle Seasons Summer 2014. Antoine Cantin, from Clarence-Rockland, ON averaged 12.56 seconds over five cubes at the Toronto Open Spring 2014.[57]
  • Feet solving: Fakhri Raihaan solved a Rubik's Cube with his feet in 27.93 seconds at the Celebes 2012.[58]
  • Group solving (12 minutes): The record for most people solving a Rubik's Cube at once in twelve minutes is 134, set on 17 March 2010 by school boys from Dr Challoner's Grammar School, Amersham, England, breaking the previous Guinness World Record of 96 people at once.[59]
  • Group solving (30 minutes): On November 21, 2012, at the O2 Arena in London, 1414 people, mainly students from schools across London, solved the Rubik's Cube in under 30 minutes, breaking the previous Guinness World Record of 937. The event was hosted by Depaul UK [60]
On November 4, 2012, 3248 people, mainly students of College of Engineering Pune, successfully solved the Rubik's cube in 30 minutes on college ground. The successful attempt is recorded in the Limca Book of Records. The college will submit the relevant data, witness statements and video of the event to Guinness authorities.[61]
  • Blindfold solving: The record for blind solving is held by Marcin Zalewski of Poland, who solved a cube blindfolded in 23.80 seconds (including memorization) at the Polish Nationals in 2013.[62]
  • Multiple blindfold solving: The record is held by Marcin Kowalczyk of Poland, who successfully solved 35 of 41 cubes blindfolded at the Polish Nationals 2013.[50]
  • Fewest moves solving: Tomoaki Okayama (岡山友昭) of Japan holds the record of 20 moves set at the 2012 Czech Open.[54]

Variations

Rubik's Cube Variants Pocket Cube Rubik's Cube Rubik's Revenge Professor's Cube V-Cube 6 V-Cube 7
Variations of Rubik's Cubes. Top row: V-Cube 7, Professor's Cube, V-Cube 6. Bottom row: Rubik's Revenge, original Rubik's Cube, Pocket Cube. Clicking on a cube in the picture will redirect to the respective cube's page.
There are different variations of Rubik's Cubes with up to seventeen layers: the 2×2×2 (Pocket/Mini Cube), the standard 3×3×3 cube, the 4×4×4 (Rubik's Revenge/Master Cube), and the 5×5×5 (Professor's Cube), the 6×6×6 (V-Cube 6), and 7×7×7 (V-Cube 7). The 173 "Over The Top" cube (available late 2011) is currently the largest (and most expensive, costing more than a thousand dollars) available. Chinese manufacturer ShengShou has been producing cubes in all sizes from 2x2x2 to 10x10x10 (as of late 2013). [66]
Non-licensed physical cubes as large as 11×11×11 based on the V-Cube are commercially available to the mass-market circa 2011 in China; these represent about the limit of practicality for the purpose of "speed-solving" competitively (as the cubes become increasingly ungainly and solve-times increase exponentially). These cubes are illegal (even in China) due to the fact that they violate Panagiotis Verdes' patents; however some countries do not enforce patent law strictly, leading to their general availability. In addition, Chinese companies have produced 3×3×3 cubes with variations on the original mechanism that, while legally controversial,[citation needed] are generally considered to be superior for competitive speedcubing.

Rubik's TouchCube
There are many variations[67] of the original cube, some of which are made by Rubik. The mechanical products include the Rubik's Magic, 360, and Twist. Also, electronics like the Rubik's Revolution and Slide were also inspired by the original. One of the newest 3×3×3 Cube variants is the Rubik's TouchCube. Sliding a finger across its faces causes its patterns of coloured lights to rotate the same way they would on a mechanical cube. The TouchCube also has buttons for hints and self-solving, and it includes a charging stand. The TouchCube was introduced at the American International Toy Fair in New York on February 15, 2009.[68][69]
The Cube has inspired an entire category of similar puzzles, commonly referred to as twisty puzzles, which includes the cubes of different sizes mentioned above as well as various other geometric shapes. Some such shapes include the tetrahedron (Pyraminx), the octahedron (Skewb Diamond), the dodecahedron (Megaminx), the icosahedron (Dogic). There are also puzzles that change shape such as Rubik's Snake and the Square One.
In 2011, Guinness World Records awarded the "largest order Rubiks magic cube" to a 17×17×17 cube, made by Oskar van Deventer.[70][71]

Custom-built puzzles


Novelty keychain
In the past, puzzles have been built resembling the Rubik's Cube or based on its inner workings. For example, a cuboid is a puzzle based on the Rubik's Cube, but with different functional dimensions, such as 2×2×4, 2×3×4, and 3×3×5.[72] Many cuboids are based on 4×4×4 or 5×5×5 mechanisms, via building plastic extensions or by directly modifying the mechanism itself.
Some custom puzzles are not derived from any existing mechanism, such as the Gigaminx v1.5-v2, Bevel Cube, SuperX, Toru, Rua, and 1×2×3. These puzzles usually have a set of masters 3D printed, which then are copied using molding and casting techniques to create the final puzzle.[citation needed]
Other Rubik's Cube modifications include cubes that have been extended or truncated to form a new shape. An example of this is the Trabjer's Octahedron, which can be built by truncating and extending portions of a regular 3×3. Most shape mods can be adapted to higher-order cubes. In the case of Tony Fisher's Rhombic Dodecahedron, there are 3×3, 4×4, 5×5, and 6×6 versions of the puzzle.

Rubik's Cube software


Magic Cube 4D, a 4×4×4×4 virtual puzzle

Magic Cube 5D, a 3×3×3×3×3 virtual puzzle
Puzzles like the Rubik's Cube can be simulated by computer software, which provide functions such as recording of player metrics, storing scrambled Cube positions, conducting online competitions, analyzing of move sequences, and converting between different move notations. Software can also simulate very large puzzles that are impractical to build, such as 100×100×100 and 1,000×1,000×1,000 cubes, as well as virtual puzzles that cannot be physically built, such as 4- and 5-dimensional analogues of the cube.

No comments:

Post a Comment